Home > Semiconductor Materials

Semiconductor Materials

Semiconductor materials are nominally small band gap insulators. The defining property of a semiconductor material is that it can be doped with impurities that alter its electronic properties in a controllable way.
These materials are classified according to the periodic table groups of their constituent atoms,different semiconductors are made up of elements from different groups in the periodic table,  properties vary between semiconductors. silicon carbide, which is a group IV
 
No.
Group
Elem.
Material
Formula
Band gap(eV)
Gap type
No.1
III-V
2
AlN
6.28
direct
No.2
III-V
2
Aluminium arsenide
AlAs
2.16
indirect
No.3
III-V
2
GaSb
0.726
direct
No.4
III-V
2
GaAs
1.43
direct
No.5
III-V
2
GaN
3.44
direct
No.6
III-V
2
GaP
2.26
indirect
No.7
III-V
2
InSb
0.17
direct
No.8
III-V
2
InAs
0.36
direct
No.9
III-V
2
Indium nitride
InN
0.7
direct
No.10
III-V
2
InP
1.35
direct
No.11
III-V
2
Aluminium antimonide
AlSb
1.6/2.2
indirect/direct
No.12
III-V
2
Aluminium phosphide
AlP
2.45
indirect
No.13
III-V
2
Boron arsenide
BAs
1.5
indirect
No.14
III-V
2
Boron arsenide
B12As2
3.47
indirect
No.15
III-V
2
Boron nitride, cubic
BN
6.36
indirect
No.16
III-V
2
Boron nitride, hexagonal
BN
5.96
quasi-direct
No.17
III-V
2
Boron nitride,nanotube
BN
~5.5
 
No.18
III-V
2
Boron phosphide
BP
2
indirect
No.19
III-V
3
AlxGa1-xAs
1.42
direct/indirect
No.20
III-V
3
InxGa1-xAs
0.36
direct
No.21
III-V
3
Indium gallium phosphide
InxGa1-xP
1.35
direct/indirect
No.22
III-V
3
Aluminium indium arsenide
AlxIn1-xAs
0.36
direct/indirect
No.23
III-V
3
Aluminium indium antimonide
AlxIn1-xSb
 
 
No.24
III-V
3
Gallium arsenide nitride
GaAsN
 
 
No.25
III-V
3
Gallium arsenide phosphide
GaAsP
1.43
direct/indirect
No.26
III-V
3
Gallium arsenide antimonide
GaAsSb
0.7
direct
No.27
III-V
3
AlGaN
3.44
direct
No.28
III-V
3
Aluminium gallium phosphide
AlGaP
2.26
indirect
No.29
III-V
3
InGaN
2
direct
No.30
III-V
3
Indium arsenide antimonide
InAsSb
 
 
No.31
III-V
3
Indium gallium antimonide
InGaSb
 
 
No.32
III-V
4
Aluminium gallium indium phosphide
AlGaInP
 
direct/indirect
No.33
III-V
4
Aluminium gallium arsenide phosphide
AlGaAsP
 
 
No.34
III-V
4
Indium gallium arsenide phosphide
InGaAsP
 
 
No.35
III-V
4
Indium gallium arsenide antimonide
InGaAsSb
 
 
No.36
III-V
4
Indium arsenide antimonide phosphide
InAsSbP
 
 
No.37
III-V
4
Aluminium indium arsenide phosphide
AlInAsP
 
 
No.38
III-V
4
Aluminium gallium arsenide nitride
AlGaAsN
 
 
No.39
III-V
4
Indium gallium arsenide nitride
InGaAsN
 
 
No.40
III-V
4
Indium aluminium arsenide nitride
InAlAsN
 
 
No.41
III-V
4
Gallium arsenide antimonide nitride
GaAsSbN
 
 
No.42
III-V
5
Gallium indium nitride arsenide antimonide
GaInNAsSb
 
 
No.43
III-V
5
Gallium indium arsenide antimonide phosphide
GaInAsSbP
 
 
No.44
IV
2
Silicon carbide, 3C-SiC
SiC
2.3
indirect
No.45
IV
2
SiC
3.3
indirect
No.46
IV
2
SiC
3
indirect
No.47
IV
1
Ge
0.67
indirect
No.48
IV
1
Silicon
Si
1.11
indirect
No.49
IV
1
Diamond
C
5.47
indirect
No.50
IV
1
Gray tin, α-Sn
Sn
0.00, 0.08
indirect
No.51
 
 
 
 
 
 
No.52
IV-VI
2
Lead selenide
PbSe
0.27
direct
No.53
IV-VI
2
Lead telluride
PbTe
0.32
 
No.54
IV-VI
3
Lead tin telluride
PbSnTe
 
 
No.55
IV-VI
2
Lead(II) sulfide
PbS
0.37
 
No.56
IV-VI
3
Thallium germanium telluride
Tl2GeTe5
 
 
No.57
IV-VI
3
Thallium tin telluride
Tl2SnTe5
 
 
No.58
IV-VI
2
Tin sulfide
SnS
1
indirect
No.59
IV-VI
2
Tin sulfide
SnS2
2.2
 
No.60
IV-VI
2
Tin telluride
SnTe
 
 
No.61
Layered
2
Bismuth sulfide
Bi2S3
 
 
No.62
Layered
2
Gallium selenide
GaSe
2.1
indirect
No.63
Layered
2
Lead(II) iodide
PbI2
 
 
No.64
Layered
2
Molybdenum disulfide
MoS2
 
 
No.65
Layered
2
Tin sulfide
SnS
 
 
No.66
Magnetic
2
Chromium(III) bromide
CrBr3
 
 
No.67
Magnetic
2
Europium(II) oxide
EuO
 
 
No.68
Magnetic
2
Europium(II) sulfide
EuS
 
 
No.69
Magnetic
2
Iron(II) oxide
FeO
 
 
No.70
Magnetic
4
Lanthanum calcium manganate
La0.7Ca0.3MnO3
 
 
No.71
Magnetic
2
Nickel(II) oxide
NiO
 
 
No.72
Magnetic,diluted
3
Cadmium manganese telluride
CdMnTe
 
 
No.73
Magnetic,diluted
3
Indium manganese arsenide
InMnAs
 
 
No.74
Magnetic,diluted
3
Lead manganese telluride
PbMnTe
 
 
No.75
Magnetic,diluted
3
Gallium manganese arsenide
GaMnAs
 
 
No.76
Oxide
3
Barium titanate
BaTiO3
3
 
No.77
Oxide
2
Bismuth trioxide
Bi2O3
 
 
No.78
Oxide
2
Copper(I) oxide
Cu2O
2.17 
 
No.79
Oxide
2
Copper(II) oxide
CuO
1.2
 
No.80
Oxide
3
Lanthanum copper oxide
La2CuO4
2
 
No.81
Oxide
3
Lithium niobate
LiNbO3
4
 
No.82
Oxide
3
Strontium titanate
SrTiO3
3.3
 
No.83
Oxide
2
Tin dioxide
SnO2
3.7
 
No.84
Oxide
2
Titanium dioxide,anatase
TiO2
3.2
indirect
No.85
Oxide
2
Titanium dioxide,brookite
TiO2
2.96
 
No.86
Oxide
2
Titanium dioxide, rutile
TiO2
3.02
direct
No.87
Oxide
2
Uranium dioxide
UO2
1.3
 
No.88
Oxide
2
Uranium trioxide
UO3
 
 
No.89
V-VI, layered
2
Bismuth telluride
Bi2Te3
 
 
No.90
VI
1
Gray selenium
Se
1.74
 
No.91
VI
1
Sulfur, α-S
S8
2.6
 
No.92
VI
1
Tellurium
Te
0.33
 
No.93
IV
2
Silicon-germanium
Si1-xGex
0.67
indirect
No.94
I-VI
2
Copper sulfide
Cu2S
1.2
direct
No.95
I-VII
2
Cuprous chloride
CuCl
3.4
direct
No.96
II-V
2
Cadmium antimonide
Cd3Sb2
 
 
No.97
II-V
2
Cadmium arsenide
Cd3As2
0.14
 
No.98
II-V
2
Cadmium phosphide
Cd3P2
 
 
No.99
II-V
2
Zinc antimonide
Zn3Sb2
 
 
No.100
II-V
2
Zinc arsenide
Zn3As2
 
 
No.101
II-V
2
Zinc phosphide
Zn3P2
 
 
No.102
II-VI
2
Cadmium selenide
CdSe
1.74
direct
No.103
II-VI
2
Cadmium sulfide
CdS
2.42
direct
No.104
II-VI
2
Cadmium telluride
CdTe
1.49
 
No.105
II-VI
2
Zinc selenide
ZnSe
2.7
direct
No.106
II-VI
2
Zinc sulfide
ZnS
3.54/3.91
direct
No.107
II-VI
2
Zinc telluride
ZnTe
2.25
direct
No.108
II-VI, oxide
2
Zinc oxide
ZnO
3.37
direct
No.109
II-VI
3
CdZnTe
1.4
direct
No.110
II-VI
3
Mercury cadmium telluride
HgCdTe
0
 
No.111
II-VI
3
Mercury zinc telluride
HgZnTe
0
 
No.112
II-VI
3
Mercury zinc selenide
HgZnSe
 
 
No.113
other
2
Arsenic sulfide
As2S3
 
 
No.114
other
2
Bismuth(III) iodide
BiI3
 
 
No.115
other
3
Copper indium selenide, CIS
CuInSe2
1
direct
No.116
other
4
Copper zinc tin sulfide, CZTS
Cu2ZnSnS4
1.49
direct
No.117
other
2
Iron disulfide
FeS2
0.95
 
No.118
other
2
Mercury(II) iodide
HgI2
 
 
No.119
other
2
Platinum silicide
PtSi
 
 
No.120
other
3
Silver gallium sulfide
AgGaS2
 
 
No.121
other
2
Silver sulfide
Ag2S
0.9 
 
No.122
other
2
Thallium(I) bromide
TlBr
 
 
No.123
other
3
Zinc silicon phosphide
ZnSiP2
 
 
No.124
other
4
Copper indium gallium selenide, CIGS
Cu(In,Ga)Se2
1
direct
Notes:

No.1 AlN: AlN are usable for ultraviolet LEDs. Inefficient emission at 210 nm was achieved on AlN.

No.3 GaSb:N type/Te doped,P type/Zn doped,undoped,used for infrared detectors and LEDs and thermophotovoltaics.

No.4 GaAs:N type/Si doped,P type/Zn doped,undoped,used as substrate for other III-V semiconductors,P-type CMOS transistors unfeasible.Used for near-IR LEDs, fast electronics, and high-efficiency solar cells. Very similar lattice constant togermanium, can be grown on germanium substrates.

No.5 GaN:N type/Si doped,undoped,P type/Mg doped,problematic to be doped to p-type, p-doping with Mg and annealing allowed first high-efficiency blue LEDs and blue lasers. Very sensitive to ESD. Insensitive to ionizing radiation, suitable for spacecraft solar panels. GaN transistors can operate at higher voltages and higher temperatures than GaAs, used in microwave power amplifiers.

No.6 GaP:N type/S or Te doped,P type/Zn doped,used in early low to medium brightness cheap red/orange/green LEDs. Used standalone or with GaAsP. Transparent for yellow and red light, used as substrate for GaAsP red/yellow LEDs.

No.7 InSb:N type/Te doped,P type/Ge doped,undoped,Used in infrared detectors and thermal imaging sensors, high quantum efficiency, low stability, require cooling, used in military long-range thermal imager systems. AlInSb-InSb-AlInSb structure used as quantum well. Very high electron mobility, electron velocity and ballistic length. Transistors can operate below 0.5V and above 200 GHz. Terahertz frequencies maybe achievable.

No.8 InAs:N type/S or Te doped,P type/Zn doped,undoped,Used for infrared detectors for 1–3.8 µm, cooled or uncooled. High electron mobility. InAs dots in InGaAs matrix can serve as quantum dots. Quantum dots may be formed from a monolayer of InAs on InP or GaAs. Strong photo-Dember emitter, used as a terahertz radiation source.

No.9 InN: Possible use in solar cells, but p-type doping difficult. Used frequently as alloys.

No.10 InP: N type/S or Te doped,P type/Zn doped,undoped,commonly used as substrate for epitaxial InGaAs. Superior electron veloxity, used in high-power and high-frequency applications. Used in optoelectronics.

No.13 BAs: Resistant to radiation damage, possible applications in betavoltaics.

No.14 B12As2: Resistant to radiation damage, possible applications in betavoltaics.

No.15 BN: potentially useful for ultraviolet LEDs

No.16 BN: potentially useful for ultraviolet LEDs

No.19 AlxGa1-xAs: direct band gap for x<0.4 (corresponding to 1.42–1.95 eV); can be lattice-matched to GaAs substrate over entire composition range; tends to oxidize; n-doping with Si, Se, Te; p-doping with Zn, C, Be, Mg. Can be used for infrared laser diodes. Used as a barrier layer in GaAs devices to confine electrons to GaAs (see e.g. QWIP). AlGaAs with composition close to AlAs is almost transparent to sunlight. Used in GaAs/AlGaAs solar cells.

No.20 InxGa1-xAs: Well-developed material. Can be lattice matched to InP substrates. Use in infrared technology and thermophotovoltaics. Indium content determines charge carrier density. For x=0.015, InGaAs perfectly lattice-matches germanium; can be used in multijunction photovoltaic cells. Used in infrared sensors, avalanche photodiodes, laser diodes, optical fiber communication detectors, and short-wavelength infrared cameras.

No.21 InxGa1-xP: used for HEMT and HBT structures and high-efficiency multijunction solar cells for e.g. satellites. Ga0.5In0.5P is almost lattice-matched to GaAs, with AlGaIn used for quantum wells for red lasers.

No.22 AlxIn1-xAs:Buffer layer in metamorphic HEMT transistors, adjusting lattice constant between GaAs substrate and GaInAs channel. Can form layered heterostructures acting as quantum wells, in e.g. quantum cascade lasers.

No.25 GaAsP:Used in red, orange and yellow LEDs. Often grown on GaP. Can be doped with nitrogen.

No.27 AlGaN:Used in blue laser diodes, ultraviolet LEDs (down to 250 nm), and AlGaN/GaN HEMTs. Can be grown on sapphire. Used in heterojunctions with AlN and GaN.

No.28 AlGaP:Used in some green LEDs.

No.29 InGaN:InxGa1–xN, x usually between 0.02–0.3 (0.02 for near-UV, 0.1 for 390 nm, 0.2 for 420 nm, 0.3 for 440 nm). Can be grown epitaxially on sapphire, SiC wafers or silicon. Used in modern blue and green LEDs, InGaN quantum wells are effective emitters from green to ultraviolet. Insensitive to radiation damage, possible use in satellite solar cells. Insensitive to defects, tolerant to lattice mismatch damage. High heat capacity.

No.32 AlGaInP:also InAlGaP, InGaAlP, AlInGaP; for lattice matching to GaAs substrates the In mole fraction is fixed at about 0.48, the Al/Ga ratio is adjusted to achieve band gaps between about 1.9 and 2.35 eV; direct or indirect band gaps depending on the Al/Ga/In ratios; used for waveengths between 560–650 nm; tends to form ordered phases during deposition, which has to be prevented

No.35 InGaAsSb:Use in thermophotovoltaics.

No.36 InAsSbP:Use in thermophotovoltaics.

No.43 GaInAsSbP:Can be grown on InAs, GaSb, and other substrates. Can be lattice matched by varying composition. Possibly usable for mid-infrared LEDs.

No.44 SiC:used for early yellow LEDs

No.46 SiC:used for early blue LEDs

No.47 Ge:N type/Sb doped,undoped,P type/Ga doped,used in early radar detection diodes and first transistors; requires lower purity than silicon. A substrate for high-efficiency multijunction photovoltaic cells. Very similar lattice constant togallium arsenide. High-purity crystals used for gamma spectroscopy. May grow whiskers, which impair reliability of some devices.

No.48 Si:N type/p doped,P type/b doped,undoped,most common semiconductor, easy to fabricate. Good electrical and mechanical properties. Forms high quality thermal oxide for insulation purposes.

No.49 C:Excellent thermal conductivity. Superior mechanical and optical properties. Extremely high mechanical quality factor.

No.50 Sn:Low temperature allotrope (diamond cubic lattice).

No.52 PbSe:Used in infrared detectors for thermal imaging. Nanocrystals usable as quantum dots.

No.53 PbTe:Low thermal conductivity, good thermoelectric material.

No.54 PbSnTe:Used in infrared detectors and for thermal imaging.

No.55 PbS:Mineral galena, first semiconductor in practical use, used in cat's whisker detectors; the detectors are slow due to high dielectric constant of PbS. Oldest material used in infrared detectors. At room temperature can detect SWIR, longer wavelengths require cooling.

No.60 SnTe:Complex band structure.

No.62 GaSe:Photoconductor. Uses in nonlinear optics.

No.67 EuO:ferromagnetic

No.68 EuS:ferromagnetic

No.69 FeO:antiferromagnetic

No.70 La0.7Ca0.3MnO3: colossal magnetoresistance

No.71 NiO: antiferromagnetic

No.76 BaTiO3: Ferroelectric, piezoelectric. Used in some uncooled thermal imagers. Used in nonlinear optics.

No.77 Bi2O3: Ionic conductor, applications in fuel cells.

No.78 Cu2O: One of the most studied semiconductors. Many applications and effects first demonstrated with it. Formerly used in rectifier diodes, before silicon.

No.79 CuO: P-type semiconductor.

No.80 La2CuO4: superconductive when doped with barium or strontium

No.81 LiNbO3:SAW grade and optical grade,ferroelectric, piezoelectric, shows Pockels effect. Wide uses in electrooptics and photonics.

No.82 SrTiO3: Ferroelectric, piezoelectric. Used in varistors. Conductive when niobium-doped.

No.83 SnO2: Oxygen-deficient n-type semiconductor. Used in gas sensors.

No.84 TiO2: photocatalytic, n-type

No.86 TiO2: photocatalytic, n-type

No.87 UO2: High Seebeck coefficient, resistant to high temperatures, promising thermoelectric andthermophotovoltaic applications. Formerly used in URDOX resistors, conducting at high temperature. Resistant to radiation damage.

No.89 Bi2Te3: Efficient thermoelectric material when alloyed with selenium or antimony. Narrow-gap layered semiconductor. High electrical conductivity, low thermal conductivity.

No.90 Se: Used in selenium rectifiers.

No.93 Si1-xGex: adjustable band gap, allows construction of heterojunction structures. Certain thicknesses ofsuperlattices have direct band gap.

No.94 Cu2S: p-type, Cu2S/CdS was the first efficient thin film solar cell

No.97 Cd3As2 : N-type intrinsic semiconductor. Very high electron mobility. Used in infrared detectors, photodetectors, dynamic thin-film pressure sensors, and magnetoresistors.

No.99 Zn3Sb2: Used in infrared detectors and thermal imagers, transistors, and magnetoresistors.

No.102 CdSe: Nanoparticles used as quantum dots. Intrinsic n-type, difficult to dope p-type, but can be p-type doped with nitrogen. Possible use in optoelectronics. Tested for high-efficiency solar cells.

No.103 CdS: Used in photoresistors and solar cells; CdS/Cu2S was the first efficient solar cell. Used in solar cells with CdTe. Common as quantum dots. Crystals can act as solid-state lasers. Electroluminescent. When doped, can act as a phosphor.

No.104 CdTe: Used in solar cells with CdS. Used in thin film solar cells and other cadmium telluride photovoltaics; less efficient than polysilicon but cheaper. High electro-optic effect, used in electro-optic modulators. Fluorescent at 790 nm. Nanoparticles usable as quantum dots.

No.105 ZnSe: Used for blue lasers and LEDs. Easy to n-type doping, p-type doping is difficult but can be done with e.g. nitrogen. Common optical material in infrared optics.

No.106 ZnS: Band gap 3.54 eV (cubic), 3.91 (hexagonal). Can be doped both n-type and p-type. Common scintillator/phosphor when suitably doped.

No.107 ZnTe: Can be grown on AlSb, GaSb, InAs, and PbSe. Used in solar cells, compoments of microwave generators, blue LEDs and lasers. Used in electrooptics. Together with lithium niobate used to generate terahertz radiation.

No.108 ZnO: Photocatalytic. Bandwidth tunable from 3 to 4 eV by alloying with magnesium oxide and cadmium oxide. Intrinsic n-type, p-type doping is difficult. Heavy aluminium, indium, or gallium doping yields transparent conductive coatings; ZnO:Al is used as window coatings transparent in visible and reflective in infrared region and as conductive films in LCD displays and solar panels as a replacement of indium tin oxide. Resistant to radiation damage. Possible use in LEDs and laser diodes. Possible use in random lasers.

No.109 CdZnTe: Efficient solid-state x-ray and gamma-ray detector, can operate at room temperature. Highelectro-optic coefficient. Used in solar cells. Can be used to generate and detect terahertz radiation. Can be used as a substrate for epitaxial growth of HgCdTe.

No.110 HgCdTe: Known as "MerCad". Extensive use in sensitive cooled infrared imaging sensors, infrared astronomy, and infrared detectors. Alloy of mercury telluride (a semimetal, zero band gap) and CdTe. High electron mobility. The only common material capable of operating in both 3–5 µm and 12–15 µm atmospheric windows. Can be grown on CdZnTe.

No.111 HgZnTe: Used in infrared detectors, infrared imaging sensors, and infrared astronomy. Better mechanical and thermal properties than HgCdTe but more difficult to control the composition. More difficult to form complex heterostructures.

No.113 As2S3: semiconductive in both crystalline and glassy state

No.116 Cu2ZnSnS4: Cu2ZnSnS4 is derived from CIGS, replacing the Indium/Gallium with earth abundant Zinc/Tin.

No.117 FeS2: Mineral pyrite. Used in later cat's whisker detectors, investigated for solar cells.

No.118 HgI2: Used in some gamma-ray and x-ray detectors and imaging systems operating at room temperature.

No.119 PtSi: Used in infrared detectors for 1–5 µm. Used in infrared astronomy. High stability, low drift, used for measurements. Low quantum efficiency.

No.120 AgGaS2: nonlinear optical properties

No.122 TlBr: Used in some gamma-ray and x-ray detectors and imaging systems operating at room temperature. Used as a real-time x-ray image sensor.

No.124 Cu(In,Ga)Se2: CuInxGa1–xSe2. Polycrystalline. Used in thin film solar cells.

 

Related Products