Home > News > SiC Semiconductor Electrical Properties

SiC Semiconductor Electrical Properties

Owing to the differing arrangement of Si and C atoms within the SiC crystal lattice, each SiC polytype exhibits unique fundamental electrical and optical properties. Some of the more important semiconductor electrical properties of the 3C, 4H, and 6H SiC polytypes are given in Table 1.1. Much more detailed electrical properties can be found in References 11–13 and references therein. Even within a given polytype, some important electrical properties are nonisotropic, in that they are strong functions of crystallographic direction of current flow and applied electric field (for example, electron mobility for 6H-SiC). Dopant impurities in SiC can incorporate into energetically inequivalent sites. While all dopant ionization energies associated with various dopant incorporation sites should normally be considered for utmost accuracy, Table 1.1 lists only the shallowest reported ionization energies of each impurity. 

TABLE 1.1 Comparison of Selected Important Semiconductor Electronic Properties of Major SiC Polytypes  

Property  Silicon  GaAs  4H-SiC  6H-SiC  3C-SiC  2H-GaN 
Bandgap (eV)  1.1 1.42 3.2 3 2.3 3.4
Relative dielectric constant  11.9 13.1 9.7 9.7 9.7 9.5
Breakdown field  0.6 0.6 //c-axis: 3.0  //c-axis: 3.2  1.8 2–3 
ND = 1017 cm_3 (MVcm_1)      c-axis: 2.5 ⊥  c-axis: > 1 ⊥     
Thermal Conductivity (W/cm-K)  1.5 0.5 3–5  3–5  3–5  1.3
Intrinsic carrier concentration   (cm_3)  1010 1.8 × 106  ~10_7  ~10_5  ~10  ~10_10 
             
Electron mobility at  1200 6500 //c-axis: 800  //c-axis: 60  750 900
ND = 1016 cm_3 (cm2V_1s_1)      c-axis: 800 ⊥  c-axis: 400 ⊥     
Hole mobility at  420 320 115 90 40 200
NA = 1016 cm_3 (cm2V_1s_1)             
Saturated electron velocity (107 cms_1)  1 1.2 2 2 2.5 2.5
Donor dopants and  P: 45  Si: 5.8  N: 45  N: 85  N: 50  Si: 20 
shallowest ionization   energy (meV)  As: 54    P: 80  P: 80     
Acceptor dopants and  B: 45  Be, Mg,  Al: 200  Al: 200  Al: 270  Mg: 140 
shallowest ionization   energy (meV)    C: 28  B: 300  B: 300     
2005 Commercial wafer diameter (cm) 30 15 7.6 7.6 15 None 

For comparison, Table 1.1 also includes comparable properties of silicon, GaAs, and GaN. Because silicon is the semiconductor employed in most commercial solid-state electronics, it is the standard against which other semiconductor materials must be evaluated. To varying degrees the major SiC polytypes exhibit advantages and disadvantages in basic material properties compared to silicon. The most beneficial inherent material superiorities of SiC over silicon listed in Table 1.1 are its exceptionally high breakdown electric field, wide bandgap energy, high thermal conductivity, and high carrier saturation velocity. The electrical device performance benefits that each of these properties enables are discussed in the next section, as are system-level benefits enabled by improved SiC devices.

[This information has already been had a look around 1068 times!]