Home > News > Anisotropy of single-crystal 3C–SiC during nanometric cutting

Anisotropy of single-crystal 3C–SiC during nanometric cutting

 3C–SiC (the only polytype of SiC that resides in a diamond cubic lattice structure) is a relatively new material that exhibits most of the desirable engineering properties required for advanced electronic applications. The anisotropy exhibited by 3C–SiC during its nanometric cutting is significant, and the potential for its exploitation has yet to be fully investigated. This paper aims to understand the influence of crystal anisotropy of 3C–SiC on its cutting behaviour. A molecular dynamics simulation model was developed to simulate the nanometric cutting of single-crystal 3C–SiC in nine (9) distinct combinations of crystal orientations and cutting directions, i.e. (1 1 1) 〈−1 1 0〉, (1 1 1) 〈−2 1 1〉, (1 1 0) 〈−1 1 0〉, (1 1 0) 〈0 0 1〉, (1 1 0) 〈1 1 −2〉, (0 0 1) 〈−1 1 0〉, (0 0 1) 〈1 0 0〉, (1 1 −2) 〈1 −1 0〉 and (1 −2 0) 〈2 1 0〉.

Source:IOPscience

For more information, please visit our website: http://www.qualitymaterial.net,

send us email at sales@powerwaywafer.com or powerwaymaterial@gmail.com